Home

Quick Links

Search

 
Transversely isotropic media equivalent to thin isotropic layers Normal access

Author: Michael Schoenberg
Journal name: Geophysical Prospecting
Issue: Vol 42, No 8, November 1994 pp. 885 - 915
DOI: 10.1111/j.1365-2478.1994.tb00247.x
Organisations: Wiley
Language: English
Info: Article, PDF ( 1.32Mb )

Summary:
Any set of isotropic layers is equivalent, in the long wavelength limit, to a unique transversely isotropic (TI) layer; to find the elastic moduli of that layer is a solved problem. The converse problem is to find a set of isotropic layers equivalent to a given TI media. Here, explicit necessary and sufficient conditions on the TI stiffness moduli for the existence of an equivalent set of isotropic layers are found by construction of a minimal decomposition consisting of either two or three isotropic constituent layers. When only two constituents are required, their elastic properties are uniquely determined. When three constituents are required, two have the same Poisson's ratio and the same thickness fraction, and even then there is a one-parameter family of satisfactory minimal decompositions. The linear slip model for fractured rock (aligned fractures in an isotropic background) yields a restricted range of transverse isotropy dependent on only four independent parameters. If the ratio of the normal to tangential fracture compliance is small enough, the medium is equivalent to thin isotropic layering and in general its minimal decomposition consists of three constituents.


Download
Back to the article list