Home

Quick Links

Search

 
Lax-Wendroff and Nyström methods for seismic modellingNormal access

Author: Jing-Bo Chen
Journal name: Geophysical Prospecting
Issue: Vol 57, No 6, November 2009 pp. 931 - 941
DOI: 10.1111/j.1365-2478.2009.00802.x
Organisations: Wiley
Language: English
Info: Article, PDF ( 459.99Kb )

Summary:
Lax-Wendroff and Nyström methods are numerical algorithms of temporal approximations for solving differential equations. These methods provide efficient algorithms for high-accuracy seismic modeling. In the context of spatial pseudospectral discretizations, I explore these two kinds of methods in a comparative way. Their stability and dispersion relation are discussed in detail. Comparison between the fourth-order Lax-Wendroff method and a fourth-order Nyström method shows that the Nyström method has smaller stability limit but has a better dispersion relation, which is closer to the sixth-order Lax-Wendroff method. The structure-preserving property of these methods is also revealed. The Lax-Wendroff methods are a secondorder symplectic algorithm, which is independent of the order of the methods. This result is useful for understanding the error growth of Lax-Wendroff methods. Numerical experiments based on the scalar wave equation are performed to test the presented schemes and demonstrate the advantages of the symplectic methods over the nonsymplectic ones.

Download
Back to the article list