Home

Quick Links

Search

 
Geoacoustic Model for the Inversion of Seismic Profiling DataNormal access

Authors: K.C. Leurer and C. Brown
Event name: Near Surface 2010 - 16th EAGE European Meeting of Environmental and Engineering Geophysics
Session: Novel Geophysical Techniques
Publication date: 06 September 2010
DOI: 10.3997/2214-4609.20144772
Organisations: EAGE
Language: English
Info: Extended abstract, PDF ( 276.58Kb )
Price: € 20

Summary:
We present a geoacoustic model to predict sediment physical parameters from single-channel seismic profiling data. The model uses the concept of a simplified sediment structure, modeled as a binary grain-size sphere pack. The seismic/acoustic response is formulated using Biot’s poroelastic theory as the general framework that is extended by two viscoelastic models. These extensions describe the mechanisms that we consider to have the most significant influence on wave propagation through soft sediment. Viscoelastic response arising from local fluid flow in expandable clay minerals leads to frequency-dependent elastic moduli of the grain material. A heuristically modified Hertz-Mindlin/Walton based viscoelastic-contact model describes local fluid flow at the grain contacts, resulting in frequency-dependent elastic moduli of the sediment frame. Porosity, density and the structural Biot parameters (permeability, pore size, structure factor) follow from the binary grain-size sphere-pack model. The remaining input parameters to the geoacoustic model consist solely of the effective pressure, the mass fractions and the known mechanical properties of each mineral constituent. We will show an example of a successful application of this model for the inversion of single-channel seismic profiling data using a neural network inversion scheme.


Back to the article list