Quick Links


Saturation and Pressure Inversion - From 4D Seismic to Reservoir Model UpdatingNormal access

Authors: M. Ayzenberg and S. Liu
Event name: 76th EAGE Conference and Exhibition 2014
Session: 4D Seismic in Reservoir Simulation - Closing the Loop
Publication date: 16 June 2014
DOI: 10.3997/2214-4609.20141150
Organisations: EAGE
Language: English
Info: Extended abstract, PDF ( 2.21Mb )
Price: € 20

We develop a fast petro-elastic inversion using the artificial neural network (ANN) approach. ANN is robust and fault tolerant, capable of handling model non-linearity, and can efficiently deal with large amounts of data. The inversion workflow consists of two main steps; network training on a carefully chosen part of the reservoir model to bring in the engineering insight, followed by the inversion using the trained network. We invert simultaneously the most informative 4D elastic attributes, such as 4D VP, for changes in reservoir state parameters, such as saturations and pressure. The workflow is demonstrated on a North Sea field, which exhibits a complex 4D signal related to a mix of saturation and pressure changes. We use the petro-elastic inversion results further for conditioning the reservoir model, and show that seismic data may contribute not only to a better understanding of a producing reservoir, but also to reservoir model updating for the purpose of enhancing the predictability of future performance.

Back to the article list