Home

Quick Links

Search

 
1D joint multi-offset inversion of time-domain marine controlled source electromagnetic dataNormal access

Authors: D. Moghadas, M. Engels and K. Schwalenberg
Journal name: Geophysical Prospecting
Issue: Vol 63, No 6, November 2015 pp. 1334 - 1354
DOI: 10.1111/1365-2478.12281
Organisations: Wiley
Special topic: CSEM
Language: English
Info: Article, PDF ( 5.63Mb )

Summary:
The accurate estimation of sub-seafloor resistivity features from marine controlled source electromagnetic data using inverse modelling is hindered due to the limitations of the inversion routines. The most commonly used one-dimensional inversion techniques for resolving subsurface resistivity structures are gradient-based methods, namely Occam and Marquardt. The first approach relies on the smoothness of the model and is recommended when there are no sharp resistivity boundaries. The Marquardt routine is relevant for many electromagnetic applications with sharp resistivity contrasts but subject to the appropriate choice of a starting model. In this paper, we explore the ability of different 1D inversion schemes to derive sub-seafloor resistivity structures from time domain marine controlled source electromagnetic data measured along an 8-km-long profile in the German North Sea. Seismic reflection data reveal a dipping shallow amplitude anomaly that was the target of the controleld source electromagnetic survey. We tested four inversion schemes to find suitable starting models for the final Marquardt inversion. In this respect, as a first scenario, Occam inversion results are considered a starting model for the subsequent Marquardt inversion (Occam–Marquardt). As a second scenario, we employ a global method called Differential Evolution Adaptive Metropolis and sequentially incorporate it with Marquardt inversion. The third approach corresponds to Marquardt inversion introducing lateral constraints. Finally, we include the lateral constraints in Differential Evolution Adaptive Metropolis optimization, and the results are sequentially utilized by Marquardt inversion. Occam–Marquardt may provide accurate estimation of the subsurface features, but it is dependent on the appropriate conversion of different multi-layered Occam model to an acceptable starting model for Marquardt inversion, which is not straightforward. Employing parameter spaces, the Differential Evolution Adaptive Metropolis approach can be pertinent to determine Marquardt a priori information; nevertheless, the uncertainties in Differential Evolution Adaptive Metropolis optimization will introduce some inaccuracies in Marquardt inversion results. Laterally constrained Marquardt may be promising to resolve sub-seafloor features, but it is not stable if there are significant lateral changes of the sub-seafloor structure due to the dependence of the method to the starting model. Including the lateral constraints in Differential Evolution Adaptive Metropolis approach allows for faster convergence of the routine with consistent results, furnishing more accurate estimation of a priori models for the subsequent Marquardt inversion.

Download
Back to the article list