Quick Links


Feasibility of utilizing wavelet phase to map the CO2 plume at the Ketzin pilot site, GermanyNormal access

Authors: Fei Huang, Christopher Juhlin, Li Han, Daniel Sopher, Monika Ivandic, Ben Norden, Wubing Deng, Fengjiao Zhang, Thomas Kempka and Stefan Luth
Journal name: Geophysical Prospecting
Issue: Vol 65, No 2, March 2017 pp. 523 - 543
DOI: 10.1111/1365-2478.12383
Organisations: Wiley
Language: English
Info: Article, PDF ( 22.8Mb )

Spectral decomposition is a powerful tool that can provide geological details dependent upon discrete frequencies. Complex spectral decomposition using inversion strategies differs from conventional spectral decomposition methods in that it produces not only frequency information but also wavelet phase information. This method was applied to a time-lapse three-dimensional seismic dataset in order to test the feasibility of using wavelet phase changes to detect and map injected carbon dioxide within the reservoir at the Ketzin carbon dioxide storage site, Germany. Simplified zero-offset forward modelling was used to help verify the effectiveness of this technique and to better understand the wavelet phase response from the highly heterogeneous storage reservoir and carbon dioxide plume. Ambient noise and signal-to-noise ratios were calculated from the raw data to determine the extracted wavelet phase. Strong noise caused by rainfall and the assumed spatial distribution of sandstone channels in the reservoir could be correlated with phase anomalies. Qualitative and quantitative results indicate that the wavelet phase extracted by the complex spectral decomposition technique has great potential as a practical and feasible tool for carbon dioxide detection at the Ketzin pilot site.

Back to the article list