Home

Quick Links

Search

 
Migration of Viscoacoustic Data Using Acoustic Reverse Time Migration with Hybrid Deblurring FiltersNormal access

Authors: Y. Chen and G. Schuster
Event name: First EAGE/SBGf Workshop on Least-Squares Migration
Session: Multiphysics
Publication date: 27 November 2018
DOI: 10.3997/2214-4609.201803070
Organisations: EAGE
Language: English
Info: Extended abstract, PDF ( 1.5Mb )
Price: € 20

Summary:
Viscoacoustic migration can significantly compensate for the amplitude loss and phase distortion in migration images computed from highly attenuated data. However, solving the viscoacoustic wave equation requires a significant amount of storage space and computation time, especially for least-squares migration methods. To mitigate this problem, we use acoustic reverse time migration (RTM) instead of viscoacoustic migration to migrate the viscoacoustic data, and then correct the amplitude and phase distortion by hybrid deblurring filters in the image domain. Numerical tests on synthetic and field data demonstrate that acoustic RTM combined with hybrid deblurring filters can compensate for the attenuation effects and produce images with high resolution and balanced amplitudes. This procedure requires less than 1/3 of the storage space and N/2 of the computation time compared to the viscoacoustic migration. Here the N indicates the iteration number of the least-square migration method. This procedure can be extended to 3D migration at even a greater cost saving.


Back to the article list