Home

Quick Links

Search

 
Automatic Classification of Microseismic Signals Related to Mining Activities by Supervised LearningNormal access

Authors: W.C. Choi, C. Kim, D. Cheon and S. Pyun
Event name: 81st EAGE Conference and Exhibition 2019
Session: Poster: Near Surface - Mining A
Publication date: 03 June 2019
DOI: 10.3997/2214-4609.201900757
Organisations: EAGE
Language: English
Info: Extended abstract, PDF ( 762.83Kb )
Price: € 20

Summary:
In this study, we perform the automatic classification of the signals generated by mining activities using supervised learning algorithms. The target mine of this study is a limestone mine in Danyang, South Korea. First, we select appropriate attributes in the time and frequency domains to characterise the signals. We manually label the recorded data into four categories: blasting, cleaning, drilling and noise. The labelled signals are divided into the training and test data sets. We train and test the 22 models provided by MATLAB and find the most accurate model. To enhance the reliability, we adopt cross-validation strategy during training and repeat training and test for 10 cases which have different composition of training and test data sets. As a result, it is proved that the bagging tree with ensemble is the most appropriate model for our problem. The accuracy of this model is approximately 98.7 %. We evaluate the trained model by using the cross-plot of attributes and confusion matrix of trained results.


Back to the article list