Home

Quick Links

Search

 
Stratigraphic complexity in fluvial fans: Lower Eocene Green River Formation, Uinta Basin, USANormal access

Authors: J. Wang and P. Plink‐Björklund
Journal name: Basin Research
Issue: Vol 31, No 5, October 2019 pp. 892 - 919
DOI: 10.1111/bre.12350
Organisations: Wiley
Language: English
Info: Article, PDF ( 6.27Mb )

Summary:
In this study, measured outcrop sections and geolocated photomosaics are integrated with areal mapping of channel dimensions, degree of amalgamation, calculations of channel‐to‐floodplain ratios and sedimentary facies variability to study and quantify the channel and floodplain deposits in the Sunnyside Delta Interval of the Lower Eocene Green River Formation in the Uinta Basin, Utah. Vertically, sand content and bed thickness increases, due to an increase in the channel‐to‐floodplain ratio, channel size and the degree of channel amalgamation. Laterally, the channel‐to‐floodplain ratio, channel size, the degree of channel amalgamation and the sand content in channel facies decreases in the paleo‐downstream direction. Such vertical and lateral transitions identify the Sunnyside Delta Interval as a fluvial fan (or distributive fluvial system). However, the vertical and lateral transitions occur at multiple spatial scales, demonstrating considerable stratigraphic complexity as compared to the existing facies and architectural models suggested for fluvial megafans and distributive fluvial systems. The smallest‐scale transitions are identified as avulsion‐related packages that form the building blocks of the stratigraphy, whereas the intermediate‐ and largest‐scale transitions are suggested to be related to lobe and whole fan progradation respectively. This documented complexity indicates the significance of self‐organization in building fluvial fan stratigraphy, and demonstrates that changes in the degree of channel amalgamation or in channel‐to‐floodplain ratio are not linked to accommodation changes. On facies scale, an abundance of Froude supercritical‐flow and high‐deposition‐rate facies, in‐channel mud deposits, and in‐channel bioturbation and desiccation indicate deposition in rivers with highly variable discharge. Such discharge conditions suggest seasonally and inter‐annually variable precipitation conditions in the US Western Interior in the Early Eocene.

Download
Back to the article list